class: center, middle, inverse, title-slide .title[ # Lecture 22 ] .subtitle[ ## Re: The tiny ] .author[ ### Dr. Christopher Kenaley ] .institute[ ### Boston College ] .date[ ### 2024/04/9 ] --- class: top # Being small <!-- Add icon library --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.14.0/css/all.min.css"> .pull-left[ Today we'll consider - Being small - Movement and translocation of the small - Modeling this ] .pull-right[ ![](https://static.wixstatic.com/media/f4f67b_7db070f86706435fafb5acca66f8db69~mv2_d_2420_1330_s_2.png/v1/fill/w_527,h_286,al_c,q_85,usm_0.66_1.00_0.01/ReynoldsNumbersOrganisms.webp) ] --- class: top # Life at low Re .pull-left[ - disturbances are manifest over huge relative distances (boundaries are all important) - inertia is negligible - shape matters considerably less (no wakes) ] .pull-right[ <img src="https://static.wixstatic.com/media/f4f67b_7db070f86706435fafb5acca66f8db69~mv2_d_2420_1330_s_2.png/v1/fill/w_527,h_286,al_c,q_85,usm_0.66_1.00_0.01/ReynoldsNumbersOrganisms.webp" width="400" /> ] --- class: top # Life at low Re .pull-left[ - disturbances are manifest over huge relative distances. (boundaries are all important) - inertia is negligible - shape matters considerably less (no wakes) ] .pull-right[ <img src="https://static.wixstatic.com/media/f4f67b_7db070f86706435fafb5acca66f8db69~mv2_d_2420_1330_s_2.png/v1/fill/w_527,h_286,al_c,q_85,usm_0.66_1.00_0.01/ReynoldsNumbersOrganisms.webp" width="400" /> ] .center[ <iframe width="560" height="315" src="https://www.youtube.com/embed/U9g4gRWkFTs" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ] --- class: top # Life at low Re .pull-left[ How far will this flagellate go? ] .pull-right[ <img src="https://water.mecc.edu/courses/ENV108/clipart/PAXIT015.jpg" width="400" /> ] .center[ `$$m\frac{dU}{dt}=6\pi r\mu U$$` `$$U=U_oe^{-6\pi rt\mu /m}$$` ] --- class: top # Life at low Re .pull-left[ How far will this flagellate go? speed= 40 μm s^−1 size= 1 μm `\(\textrm{mass=}10^{−12}\textrm{ g}\)` `\(\mu\)`=1 mPa/s `$$m\frac{dU}{dt}=6\pi r\mu U$$` `$$U=U_oe^{-6\pi rt\mu /m}$$` ] .pull-right[ <img src="https://water.mecc.edu/courses/ENV108/clipart/PAXIT015.jpg" width="400" /> ] --- class: top # Life at low Re .pull-left[ How far will this flagellate go? speed= 40 μm s^−1 size= 1 μm `\(\textrm{mass=}10^{−12}\textrm{ g}\)` `\(\mu\)`=1 mPa/s `$$m\frac{dU}{dt}=6\pi r\mu U$$` `$$U=U_oe^{-6\pi rt\mu /m}$$` ] .pull-right[ ```r u <- function(Uo,m,mu,t,r){ Uo*exp(-6*pi*r*t*mu/m) } t <- seq(0,1,0.001) Ut <- u(Uo=40*1e-6,m=10^-12,t=t,r=1e-6,mu=1e-3) p1 <- qplot(t,log(Ut))+theme_classic(20)+ylab("U (m/s)")+xlab("t (s)") print(p1) ``` <img src="Lecture22_files/figure-html/unnamed-chunk-6-1.png" height="250" /> ] .center[ ] --- class: top # Life at low Re .pull-left[ <img src="Lecture22_files/figure-html/unnamed-chunk-7-1.png" height="300" /> ] .pull-right[ <img src="Lecture22_files/figure-html/unnamed-chunk-8-1.png" height="300" /> dist=U x t ] --- class: top # Life at low Re How far will it go? .pull-left[ <img src="Lecture22_files/figure-html/unnamed-chunk-9-1.png" height="300" /> ] .pull-right[ <img src="Lecture22_files/figure-html/unnamed-chunk-10-1.png" height="300" /> ``` ## [1] 4e-08 ``` He atom is 1.4 × 10^-10 m ] --- class: top # Life at low Re .pull-left[ How far will a pollen spore go? speed= 10 m s^−1 size= 100 μm `\(\textrm{mass=}2.5^{−10}\textrm{ g}\)` `\(\mu\)`=.2 mPa/s In the X . . . `$$m\frac{dU}{dt}=6\pi r\mu U$$` In the Y . . . `$$m\frac{dV}{dt}=6\pi r\mu U-mg$$` ] .pull-right[ <img src="https://www.botany.one/wp-content/uploads/2019/04/Misc_pollen_colorized.jpg" width="400" /> ] --- class: top # Life at low Re .pull-left[ How far will a pollen spore go? speed= 10 m s^−1 size= 100 μm `\(\textrm{mass=}2.5^{−10}\textrm{ g}\)` `\(\mu\)`=.2 mPa/s In the X . . . `$$m\frac{dU}{dt}=6\pi r\mu U$$` In the Y . . . `$$m\frac{dV}{dt}=6\pi r\mu U-mg$$` ] .pull-right[ ```r t2 <- seq(0,100,0.001) uy <- function(Uo,m,mu,t,r,g=9.8){ Uo*exp(-6*pi*r*t*mu/m-g)*-1} Uy <- uy(Uo=10,m=12.5*10^-9,t=t2,r=1e-4,mu=2e-5) Ux <- u(Uo=10,m=12.5*10^-9,t=t2,r=1e-4,mu=2e-5) dy <- cumsum(Uy*0.001) dx <- cumsum(Ux*0.001) qplot(dx,dy)+ylab("dY (m)")+xlab("dX (m)")+theme_classic(20) ``` <img src="Lecture22_files/figure-html/unnamed-chunk-12-1.png" width="200" /> ] --- class: center, middle # Thanks! Slides created via the R package [**xaringan**](https://github.com/yihui/xaringan).