class: center, middle, inverse, title-slide .title[ # Lecture 18 ] .subtitle[ ## Gliding into D = m x g cos(theta) ] .author[ ### Dr. Christopher Kenaley ] .institute[ ### Boston College ] .date[ ### 2025/03/20 ] --- class: top # Powered flight <!-- Add icon library --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.14.0/css/all.min.css"> .pull-left[ Today we'll .... - How birds generate forward thrust - Evolution of flight ] .pull-right[ <iframe width="560" height="315" src="https://www.youtube.com/embed/YfAHXY97kTA" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ] --- class: top # Review of lift .center[ Along a streamline PE + KE + W + **E dissipated** = constant `$$(P_2-P_1)/\rho+(u_2^2-u_1^2)/2=0$$` <img src="img/bernlift.png" width="650" /> ] LIFT: component perpendicular to direction of motion DRAG: component parallel to direction of motion --- class: top # Review of lift <img src="https://static.scientificamerican.com/sciam/assets/Image/2020/saw0220Regi32_d.png?w=350" width="350" /> LIFT: component perpendicular to direction of motion DRAG: component parallel to direction of motion --- class: top # But how do animals do it? .center[ <img src="https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/Images/forces.gif" width="650" /> They don't have props or engines. ] --- class: top # But how do animals do it? .pull-left[ In gliding/soaring <img src="img/liftdrag.jpg" width="300" /> ] .pull-right[ Powered flight, i.e., flapping <img src="img/glideangle.png" width="500" /> If the glide angle is large enough to shift the net aerodynamic force forward, there is a forward force component. ] --- class: top # But how do animals do it? .center[ Powered flight, i.e., flapping <img src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgIYVDqOKzFCLZcyR56k5dMze3wWKOJtINAEqWVKgHmHmEL95lREg7fI0a3tkCssV3XB-y2r8ODClb7Y_BDR-qbQQ8_3zddueY70UdXsQXykdyw_IeTn5iyQjSTIDQ0mA4WLf25Y8kpSTLvzKHcQ-OrFo_E-IuauJlYAruoeENndrWDBxByYevutZFj/s535/31.webp" width="400" /> Helicopters have to pitch the rotors to produce forward thrust ] --- class: top # But how do animals do it? .center[ <img src="img/flappingflight.jpg" width="500" /> ] Over flap cycle: * lift overcomes weight * thrust overcomes drag --- class: top # But how do animals do it? .center[ <iframe width="560" height="315" src="https://www.youtube.com/embed/YfAHXY97kTA" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ] Over flap cycle: * lift overcomes weight * thrust overcomes drag --- class: top # But how do animals do it? .pull-left[ Wing is folded on upstroke (amongst other things): * Reduced wing area * Drive less air * Reduced *drag* and lift * Typically undulating flight path ] .pull-right[ <img src="img/howfly.jpg" width="500" /> ] .center[ <img src="https://cdn.birdwatchingdaily.com/2020/07/Songbird-flight-paths.jpg" width="400" /> ] --- class: top # Is flight efficient? .center[ <img src="https://royalsocietypublishing.org/cms/asset/7ff501db-011c-4eac-a253-a8d1414049c8/rstb20150384f04.jpg" width="500" /> Why somewhere in the middle? ] --- class: top # Evolution of bird flight * Ostrom's Bug-net Theory .center[ <img src="http://4.bp.blogspot.com/-4LE4fIp5TqU/T2TQpDLL9sI/AAAAAAAABKk/WjGqtjK75vk/s1600/Dino.jpg" width="500" /> REJECTED ] --- class: top # Evolution of bird flight * Top-down (arboreal - began gliding from trees) * Bottom-up (cursorial - running take-off) * WAC (Wing-Assisted climbing) * WAIR (Wing-Assisted Incline Running) .center[ <img src="https://www.researchgate.net/profile/Sankar-Chatterjee/publication/278708131/figure/fig3/AS:267540194656302@1440797961634/Four-models-for-the-origin-of-avian-flight-a-Running-for-the-cursorial-model-a.png " width="250" /> ] --- class: top # Evolution of bird flight * Top-down (arboreal - began gliding from trees) * Bottom-up (cursorial - running take-off) * WAC (Wing-Assisted climbing) * WAIR (Wing-Assisted Incline Running) .center[ <iframe width="560" height="315" src="https://www.youtube.com/embed/5Rjin-tjOxU" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ] --- class: top # Evolution of bird flight ## WAIR (Wing-Assisted Incline Running) .center[ <img src="img/wair.png" width="700" /> ] --- class: top # Evolution of bird flight ## WAIR (Wing-Assisted Incline Running) .center[ <img src="img/wair2.png" width="600" /> ] --- class: center, middle # Thanks! Slides created via the R package [**xaringan**](https://github.com/yihui/xaringan).