class: center, middle, inverse, title-slide .title[ # Lecture 16 ] .subtitle[ ## Re: Shape ] .author[ ### Dr. Christopher Kenaley ] .institute[ ### Boston College ] .date[ ### 2024/03/14 ] --- class: top # Re: Shape <!-- Add icon library --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.14.0/css/all.min.css"> .pull-left[ Today we'll .... - Review Re - Consider Shape, drag, and Re - Sharks, wings, and a crisis ] .pull-right[ <img src="https://www.researchgate.net/profile/Marion-Segall/publication/333103343/figure/fig1/AS:758691913547777@1557897656864/Pressure-drag-behind-a-sphere-and-comparison-with-a-streamlined-shape-For-a-streamlined.png" width="250" /> <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Denticules_cutan%C3%A9s_du_requin_citron_Negaprion_brevirostris_vus_au_microscope_%C3%A9lectronique_%C3%A0_balayage.jpg/1024px-Denticules_cutan%C3%A9s_du_requin_citron_Negaprion_brevirostris_vus_au_microscope_%C3%A9lectronique_%C3%A0_balayage.jpg" width="250" /> ] --- class: top # Viscocity and Drag .pull-left[ What is the relationship between fluid motion and pressure? Along a streamline PE + KE + W + **E dissipated** = constant Viscosity robs fluid of its momentum. There is a shear stress exerted on the sphere and energy is dissipated by viscosity. Because of viscosity, velocity cannot increase as much as in the inviscid case. ] .pull-right[ `\((P_2-P_1)/\rho+(u_2^2-u_1^2)/2=0\)` `\(\small{\frac{\text{Pressure stress}}{\text{Shear stress}} = Re= \frac{\rho uL}{\mu}}\)` <img src="img/paradox2.png" width="650" /> Net forces when `\(\mu\neq0\)` ] --- class: top # Viscocity and Drag .center[ `\((P_2-P_1)/\rho+(u_2^2-u_1^2)/2=0\)` Because of viscosity, velocity cannot increase as much as in the inviscid case. Therefore, we have flow separation. <img src="https://www.tec-science.com/wp-content/uploads/2021/04/en-gases-liquids-fluid-mechanics-boundary-layer-flow-separation-cylinder-turbulent.jpg" width="550" /> ] --- class: top # Drag Forces: Friction and Pressure Stresses .pull-left[ Drag forces arise from pressure and frictional (skin) stresses `\(D\sim\rho u^2/2\)` `\(D=C_d\rho S u^2/2\)` `\(C_d\)`= drag coefficient `\(S\)`= cross sectional (frontal) area `\(C_d=\frac{D}{\frac{1}{2}\rho u^2S}\)` `\(C_d\)` a function of shape and Re ] .pull-right[ <br> <br> <br> <img src="https://ars.els-cdn.com/content/image/3-s2.0-B9780123973085000155-f15-11-9780123973085.jpg" width="650" /> ] --- class: top # Shape and drag .center[ <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Drag.svg/1200px-Drag.svg.png" width="350" /> ] .footnote[Must specify Re!] --- class: top # Shape and drag .center[ <img src="img/dragRE.png" width="650" /> ] .pull-left[.footnote[Must specify Re!]] .pull-right[.footnote[T. Daniel, UW]] --- class: top # Shape and drag .pull-left[ Fineness: manage your wake fineness ratio=L\D <img src="img/fineness.png" width="250" /> ] .pull-right[ <img src="https://i.ytimg.com/vi/JRfb2-tyRyg/maxresdefault.jpg" width="350" /> <img src="https://silodrome.com/wp-content/uploads/2011/05/autowp.ru_mg_ex181_1.jpg" width="350" /> ] --- class: top # Shape and drag .pull-left[ Fineness: manage your wake fineness ratio=L\D <img src="img/fineness.png" width="250" /> Where would you find these fishes? What behaviors would the exhibit? Trade offs? ] .pull-right[ <br> <img src="https://www.researchgate.net/profile/Christopher-Fulton/publication/258350558/figure/fig1/AS:297544254017547@1447951486996/Body-shape-variation-of-fishes-sampled-in-this-study-The-examples-show-the-range-of.png" width="350" /> <img src="https://isopolar.com/wp-content/uploads/Post_3.jpg" width="300" /> ] --- class: top # Shape and drag .pull-left[ Drag isn't always bad! Drag can be a propulsive forces! <img src="https://greenpestservices.net/wp-content/uploads/2015/06/backswimmers.jpg" width="300" /> ] .pull-right[ <img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTInHiPn3FeTowXqhCWKzs9vGlwg4h8qAlr09pzcS9F2Xrt_9zsr7Hswk82NB55gRdor6M&usqp=CAU" width="350" /> <img src="https://www.britishrowing.org/wp-content/uploads/2020/07/Windsor-boys-sculler-1600x900-1.jpg" width="400" /> ] --- class: top # Sharks, wind, and a crisis .center[ The drag crisis `\(\small{\frac{\text{Pressure stress}}{\text{Shear stress}} = Re= \frac{\rho uL}{\mu}}\)` ![](https://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Drag_coefficient_on_a_sphere_vs._Reynolds_number_-_main_trends.svg/1200px-Drag_coefficient_on_a_sphere_vs._Reynolds_number_-_main_trends.svg.png) ] --- class: top # Sharks, wind, and a crisis .center[ Skin (friction) drag in the boundary layer under laminar flow (low Re) ![](https://www.tec-science.com/wp-content/uploads/2021/04/en-gases-liquids-fluid-mechanics-boundary-layer-flow-separation-cylinder-velocity-profile.jpg) ] --- class: top # Sharks, wind, and a crisis .center[ Skin (friction) drag in the boundary layer under laminar flow (low Re) <iframe width="555" height="312" src="https://www.tec-science.com/wp-content/uploads/2020/06/en-gases-liquids-fluid-mechanics-boundary-layer-flow-separation-cylinder.mp4" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe ] --- class: top # Sharks, wind, and a crisis .center[But what if we disrupt the boundary layer, introducing turbulence? ![](https://www.tec-science.com/wp-content/uploads/2021/04/en-gases-liquids-fluid-mechanics-boundary-layer-flow-separation-laminar-turbulent.jpg) ] --- class: top # Sharks, wind, and a crisis .center[But what if we disrupt the boundary layer, introducing turbulence? Put, where have you seen this? ] --- class: top # Sharks, wind, and a crisis .center[But what if we disrupt the boundary layer, introducing turbulence? Put, where have you seen this? ![](https://www.tec-science.com/wp-content/uploads/2021/04/gases-liquids-fluid-mechanics-boundary-layer-flow-separation-golf-ball-separation-why-dimples.jpg) ] # Sharks, wind, and a crisis .center[But what if we disrupt the boundary layer, introducing turbulence? Put, where have you seen this? <iframe width="555" height="312" src="https://www.tec-science.com/wp-content/uploads/2020/06/en-gases-liquids-fluid-mechanics-boundary-layer-flow-separation-cylinder-golf-ball-dimples.mp4" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe ] --- class: top # Sharks, wind, and a crisis .center[But what if we disrupt the boundary layer, introducing turbulence? <iframe width="555" height="312" src="https://www.tec-science.com/wp-content/uploads/2020/06/en-gases-liquids-fluid-mechanics-boundary-layer-flow-separation-cylinder-golf-ball-dimples.mp4" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe ] --- class: top # Sharks, wind, and a crisis .center[But what if we disrupt the boundary layer, introducing turbulence? ![](https://pubs.rsc.org/image/article/2021/RA/d0ra08672j/d0ra08672j-f1_hi-res.gif) ] --- class: top # Sharks, wind, and a crisis .center[But what if we disrupt the boundary layer, introducing turbulence? <img src="https://i.natgeofe.com/n/beb716b4-6755-4421-9bad-1c027238c2ec/01-shark-skin-turbine.jpg" width="350" /> <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Drag_coefficient_on_a_sphere_vs._Reynolds_number_-_main_trends.svg/1200px-Drag_coefficient_on_a_sphere_vs._Reynolds_number_-_main_trends.svg.png" width="400" /> ] --- class: top # Sharks, wind, and a crisis .center[But what if we disrupt the boundary layer, introducing turbulence? <img src="https://i.natgeofe.com/n/beb716b4-6755-4421-9bad-1c027238c2ec/01-shark-skin-turbine.jpg" width="350" /> <img src="https://www.tec-science.com/wp-content/uploads/2021/04/en-boundary-layer-flow-separation-wing-airplane-airfoil-turbulators-vortex-generators.jpg" width="400" /> ] --- class: center, middle # Thanks! Slides created via the R package [**xaringan**](https://github.com/yihui/xaringan).