class: center, middle, inverse, title-slide .title[ # Lecture 8 ] .subtitle[ ## Coarse Materials III ] .author[ ### Dr. Christopher Kenaley ] .institute[ ### Boston College ] .date[ ### 2024/2/8 ] --- class: inverse, top # Material Properties, Failure, and the Viscous World <!-- Add icon library --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.14.0/css/all.min.css"> .pull-left[ Today we'll .... - Finish up with solid material properties - Consider fractures and imperfections - Consider fluids vs. solids - Consider fluids + solids (viscoelastics) ] .pull-right[ ![](https://www.physio-pedia.com/images/thumb/b/be/Rep_loading-unloading_curve_intechopen.jpeg/357px-Rep_loading-unloading_curve_intechopen.jpeg) ] --- class: top # Toughness .center[ ### The energy imparted is the **mechanical strain energy** that can be returned or be so great as to break the material ] .pull-left[ .center[ `\(U=\int\sigma d\varepsilon\)` ] <img src="img/toughness.png" width="350" /> ] .pull-right[ `\(T=\int\sigma d\varepsilon\)` **Toughness:** the energy per unit volume required to break a material ] --- class: top # Toughness .center[ ### Some (but not necessarily all) of the mechanical energy can be returned ] .pull-left[ .center[ `\(U=\int\sigma d\varepsilon\)` ] <img src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191021053530314-0709:9781108686624:72215fig26_6b.png?pub-status=live" width="350" /> ] .pull-right[ **Resilience (R)**= `$$\frac{\textrm{strain energy returned}}{\textrm{strain energy absorbed}}$$` <table> <thead> <tr> <th style="text-align:left;"> material </th> <th style="text-align:left;"> R </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Silk </td> <td style="text-align:left;"> 35% </td> </tr> <tr> <td style="text-align:left;"> Elastin </td> <td style="text-align:left;"> 76% </td> </tr> <tr> <td style="text-align:left;"> Abductin </td> <td style="text-align:left;"> 80% </td> </tr> <tr> <td style="text-align:left;"> Collagen (tendon) </td> <td style="text-align:left;"> 93% </td> </tr> <tr> <td style="text-align:left;"> Resilin (wing hinge) </td> <td style="text-align:left;"> 97% </td> </tr> </tbody> </table> ] --- class: top # Resilience in the vertebrate body ### The cardiovascular system? --- class: top # Resilience in the vertebrate body ### The cardiovascular system? .center[ <img src="https://www.austincc.edu/apreview/NursingPics/VascularPics/Picture8.jpg" width="400" /> ] --- class: top # Fracture theory (without all the equations) ### In an ucompromised structure, stress in applied uniformly .pull-left[ <img src="img/fracturemode.png" width="700" /> ### With imperfections, stress is applied nonuniformly ] --- class: top # Fracture theory (without all the equations) ### In an ucompromised structure, stress in applied uniformly .pull-left[ <img src="img/fracturemode.png" width="700" /> ### With imperfections, stress is applied nonuniformly ] .pull-right[ - Why do bones and shells break explosively? - Why do cracks propagate? ] --- class: top # Fracture theory (without all the equations) ### In an ucompromised structure, stress in applied uniformly .pull-left[ .center[ <img src="img/crack.png" width="150" /> ] ### With imperfections, stress is applied nonuniformly `\(\textrm{Strain energy}=U=\int\sigma d\varepsilon=\frac{\sigma^2}{2E}\)` ] .pull-right[ - Why do bones and shells break explosively? - Why do cracks propagate? `\(\textrm{Strain energy release}= \frac{\sigma^2}{E} \pi a^2t\)` Strain energy releases by crack <img src="img/cracklength.png" width="300" /> ] --- class: top # Viscoelastics .center[ ### Materials that show time dependency are **viscoelastic** <img src="img/viscos.png" width="700" /> ] .pull-left[ .center[ `\(F\sim \Delta L\)` `\(\sigma\sim \varepsilon\)` `\(\sigma \sim E\varepsilon\)` ]] .center[ .pull-right[ `\(F\sim \Delta L/\Delta t\)` `\(\sigma\sim d\varepsilon/dt\)` `\(\sigma \sim d\mu \varepsilon/dt\)` `\(\mu=\textrm{viscosity}\)` Newton's third law ] ] --- class: top # Fluids .center[ <img src="img/fluidstrainrates.png" width="400" /> ] - Hookean materials (solids): stress vs. strain relationship is linear (constant stiffness) - Newtonian fluids: stress vs. strain **rate** is linear (constant viscosity) --- class: top # How do we know when we have a fluid? .center[ <img src="img/creep2.png" width="650" /> ] .pull-left[ .center[ `\(\sigma = E \varepsilon\)` ] ] .pull-right[ .center[ `\(\sigma = d\mu \varepsilon/dt\)` ] ] .center[ <img src="img/springdashpot.png" width="600" /> ] --- class: top # Methods to reveal a viscoelastic property ### Creep and stress relaxtion tests .center[ Apply a constant stress? Relax a stress? What happens to deformation? Why? ] --- class: top # Methods to reveal a viscoelastic property ### Creep and stress relaxtion tests .center[ <img src="https://ars.els-cdn.com/content/image/3-s2.0-B9780128098318000052-f05-04-9780128098318.jpg" width="450" /> Apply a constant stress? (A) Relax a stress? (B) What happens to deformation? Why? ] --- class: top # What if we have both? .center[ <img src="img/mucuscartilage.png" width="650" /> ] .pull-left[ .center[ Maxwell model ] ] .pull-right[ .center[ Voigt model ] ] --- class: top # Why this in a tendon? .center[ <img src="https://www.physio-pedia.com/images/thumb/b/be/Rep_loading-unloading_curve_intechopen.jpeg/357px-Rep_loading-unloading_curve_intechopen.jpeg" width="450" /> ] --- class: center, middle # Thanks! Slides created via the R package [**xaringan**](https://github.com/yihui/xaringan).